Chemistry of explosives: biodegradation of nitro-aromatic compounds

  • Authors: A.O. Zulfiharov, M.S. Artamonov, O.S. Zulfiharov
  • UDC: 543.9+502(504)
  • DOI: 10.33273/2663-9726-2023-59-2-48-61
Download attachments:

A. Zulfigarov1, M. Artamonov2, O. Zulfigarov2

 

1National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

2Ecopharm LLC, Kyiv, Ukraine

 

Abstract. The use of nitroaromatic compounds in Ukraine in various spheres of industry and their accumulation in critical volumes in the war zone and in the adjacent territories require the development of modern methods of their destruction in order to minimize the harmful effects on human health and the environment.

Aim. Analysis of modern biological methods of disposal of explosives using the example of biodegradation of nitroaromatic compounds.

Materials and Methods. The results of scientific research and data from open sources of scientific information highlighting the issue of developing biological methods for the disposal of explosives. The methods of content analysis, system and comparative analysis were used.

Results. Summarized modern trends in the development of methods of biodegradation of nitroaromatic compounds. Using TNT as an example, the aerobic and anaerobic mechanisms of decomposition of nitroaromatic compounds by bacteria and biodegradation by fungi are highlighted. The peculiarities of the metabolism of nitroaromatic compounds with the participation of various microorganisms are revealed. Modern methods of biodegradation of ammunition waste are considered, such as: bioremediation, phytoremediation, composting and the use of bioreactors. Emphasis is placed on the relevance of the search for enzymes involved in the degradation of nitroaromatic compounds, among which bacterial nitroreductases have special biotechnological prospects, which are catalysts of the process of sequential transfer of electron pairs to the nitro groups of aromatic compounds with the subsequent formation of nitroso-, hydroxylamine-, and amine derivatives.

Conclusions. Scientific research and modern military experience show that bioremediation and phytoremediation are promising methods of eliminating the negative impact on the environment of nitroaromatic compounds, toxic industrial waste and ammunition components.

Keywords: explosives, ammunition, disposal, biodegradation.

 

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ / REFERENCES

 

1. Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chemosphere. 2017 Oct;184:438-451. DOI: 10.1016/j.chemosphere.2017.06.008.

2. Kovacic P, Somanathan R. Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol. 2014 Aug;34(8):810-24. DOI: 10.1002/jat.2980

3. Ju K-S, Parales RE. Nitroaromatic compounds, from synthesis to biodegradation. Microbiology and Molecular Biology Reviews. 2010. P. 250-72. DOI: 10.1128/MMBR.00006-10.

4. Bilal M, Bagheri AR, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. J Environ Manage. 2021 Aug 1;291:112685. DOI: 10.1016/j.jenvman. 2021.112685.

5. Craig H, Sisk WE, Nelson MD, Dana WH. Bioremediation of Explosives Contaminated Soils: A Status Review. Proceedings of the 10th Annual Conference on Hazardous Waste Research. 1995. 164-77. URL: https://www.researchgate.net/publication/237469945_Bioremediation_of_Explosives_Contaminated_Soils_A_Status_Review.

6. Ariyarathna T, Vlahos P, Smith RW, Fallis S, Groshens T, Tobias C. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments. Environ Toxicol Chem. 2017 May;36(5):1170-80. DOI: 10.1002/etc.3666.

7. Panz K, Miksch K. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manage. 2012 Dec 30;113:85-92. DOI: 10.1016/j.jenvman.2012.08.016.

8. Zhang T, Zhang H. Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorganisms. 2022 Feb; 10(2): 261. DOI: 10.3390/microorganisms10020261.

9. Menezes O, Owens C, Rios-Valenciana EE, Sierra- Alvarez R, Field JA, Spain JC. Designing bacterial consortia for the complete biodegradation of insensitive munitions compounds in waste streams. Biotechnol Bioeng. 2022 Sep;119(9):2437-2446. DOI: 10.1002/bit.28160.

10. Alami NH, Shoraya UM, Nimatuzahroh F. The Influence of Microbial Consortium in Bioremediation Process using Bioreactor. PTEK, Journal of Science, Vol. 1 No. 1, 2014 (eISSN: 2337-8530). DOI:10.12962/j23378530.v1i1.a436.

11.Li X, Wu S, Dong Y, Fan H, Bai Z, Zhuang X. Engineering Microbial Consortia towards Bioremediation. Water 2021, 13, 2928. DOI: 10.3390/w13202928.

12. Hayaishi O, Nozaki M. Nature and mechanisms of oxygenases. Science 1969 № 164, p. 389-396. DOI: 10.1126/science.164.3878.389.

13. Blasco RE, Wray MV, Pieper DH, Timmis K, Castillo F. 3-Nitroadipate, a metabolic intermediate for the mineralization of 2,4-dinitrophenol by a new strain of a Rhodococcus Species. J. Bacteriol. 1999. 181:149– 152. DOI: 10.1128/jb.181.1.149-52.1999.

14. Nishino SF, Paali GC, Spain JC. Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,4-dinitrotoluene. Appl. Envirion. Microbiol. 2000. 66, p. 2139-2147. DOI: 10.1128/aem.66.5.2139-47.2000.

15. Haidour A, Ramos IL. Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene and 2,6-dinitrotoluene by Pseudomonas sp. Envirion. Sci. Technol. 1996. 30. 2365-70.

16. Honeycutt ME, Jarvis AS, Mc Farland YA. Cytotoxicity and mutagenicity of 2,4,6-trinitrotoluene and its metabolites. Ecotoxicol. Environ. Sci. 1996. 35, p. 282-287. DOI: 10.1006/eesa.1996.0112

17. Rajan J, Valli K, Perkins RE, Sariaslani FS, Barns SM, Reysenbach A-L, Rehm S, Ehringer M, Pace NR. Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J. Ind. Microbiol. Biotechnol. 1996. 16:319–324. DOI: 10.1007/BF01570041.

18. Ederer MM, Lewis TA, Crowford RL. 2,4,6-Trinitrotoluene (TNT) transformation by Clostridia isolated comparison with non-adapted bacteria. J. Ind. Microbiol. Biotechnol. 1997. 18, p 82-8.

19. Esteve-Nuner A, Caballero A, Ramos J. Biological degradationof 2,4,6- trinitrotoluene. Microbiol. And Mol. Biol. Rev. 2001. V. 65, №3, p. 335-352. DOI: 10.1128/MMBR.65.3.335-52.2001.

20. Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate-reducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic digester. Curr. Microbiol. 1992. 25, p. 235-241. DOI: 10.1007/BF01570724.

21. Schnell S, Schinck B. Anaerobic aniline degradation via reductivede amination of 4-aminobenzoyl-CoA in Desulfobacterium aniline. Arch. Microbiol. 1991. 155, p. 183-190.

22. Roldan M, Perez-Reinado E, Castillo F, Moreno- Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. Microbiol. Rev. 32, p. 474-500 (2008). DOI: 10.1111/j.1574- 6976.2008.00107.x

23. Dugue E, Haidour A, Godoy F, Ramos JL. Construction of a Pseudomonas hybrids train that miniralizes 2,4,6-trinitrotoluene. J. Bacterriology. 1993. V. 175, №8, p. 2278-2283. DOI: 10.1128/jb.175.8.2278-2283.1993.

24. Van Aken B, Godefroid LM, Peres CM, Naveau H, Agathos SN. Mineralization of 14C-ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese – dependent peroxidase of the white-rot basidiomycete Phlebiaradiate. J. Biotechnol. 1999. 68, p. 159-169.

25. Tharakan JP, Gordon JA. Cametabolic biotransformation of TNT supported by aromatic and non-aromatic cosubstrates. Chemosphere, 1999, 38(6), Р. 1323– 1330.

26. Boopathy R, Manning J. Surfactant-enhanced bioremediation of soil contaminated with 2,4,6-trinitrotoluene in soils slurry reactors. Water Environ. Res. 1999. 71, №1, P. 119-124.

27. Palazzo AJ, Leggett DC. Effect and disposition of TNT in a Terrestrial plant. J. Envirol. Qual. 1986. 15, p. 49-52. DOI: 10.2134/jeq1986.00472425001500010012x.

28. Harvey SD, Fellows RJ, Cataldo DA, Bean RM. Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography. 1990. J. Chromatography, 518 (2), p. 361-374. DOI: 10.1897/1551-5028(1998)017<2266:TOTBTA>2.3.CO;2

29. Peterson MM, Horst GL, Shea PJ, Comfort SD. Germination and seedling development of switch grass and smooth brome grass exposed to 2,4,6-trinitrotoluene. Environ. Pollut. 1998. 99, p. 55-59. DOI: 10.1016/s0269-7491(97)00175-9.

30. Thompson PL, Ramer LA, Schnoor JL. Uptake and transformation of TNT by hybrid poplar trees. Environ. Sci. Technol. 1998, 32, p. 975-980. DOI: 10.1021/es970799n.

31. French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC. Biodegradation of explosives by transgenic plants expressing Pentaerythritol Tetranitrate Reductase. Nat Biotechnol. 1999. 17, p. 481-494. DOI: 10.1038/8673.

32. French CE, Nicklin S, Bruce NC. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase. Appl. Environ Microbiol. 1998. 64, p. 2864-2868. DOI: 10.1128/aem.64.8.2864-2868.1998.

33. Peres CM, Agathos SN. Biodegradation of nitroaromatic pollutants: from pathway store mediation. Biotechnol. Ann. Rev. 2000. V.6, p. 197-220. DOI: 10.1016/s1387-2656(00)06023-3.

34. Williams RT, Ziegenfuss PS, Sisk WE. Composting of explosives and propellant contaminated soils under the thermophilic and mesophilic conditions. J. Ind. Microbiol. 1992. V.9, 137–144. DOI: 10.1007/BF01569746.

35. Boopathy R, Manning J, Kulpa CF. A laboratory study of the bioremediation of 2,4,6-trinitrotoluene contaminated soil using aerobic/anoxic soil slurry reactor. Water environment research. 1998. 70(1), 80-86.

 

Стаття надійшла до редакції 26.09.2023 р.

Received September, 26, 2023.