Н.В. Курділь1, А.Є. Подрушняк1 , М.Л. Зінов'єва1 , Г.І. Петрашенко1, У.В. Карпюк2, Н.П. Ковальська2
1 ДП «Науковий центр превентивної токсикології, харчової та хімічної безпеки імені академіка Л.І. Медведя Міністерства охорони здоров'я України», м. Київ, Україна
2 Національний медичний університет імені О.О. Богомольця, м. Київ, Україна
РЕЗЮМЕ. Україна сьогодні не регулює продаж продукції, виготовленої з кратому ‒ Mitragyna speciosa Korth. (з сімейства Rubiaceae) та не здійснює заходів з контролю якості та безпечності цього продукту, не зважаючи на його стрімке поширення по всій території держави.
Мета. Полягає в узагальненні результатів наукових досліджень щодо токсичності альтернативних опіоїдів, які містятся у складі Mitragyna speciosa та комбінованих продуктів на їхній основі.
Матеріали та методи. Використано звіти Всесвітньої організації охорони здоров'я (WHO), Європейського центру моніторингу наркотиків та наркоманії (The European Monitoring Centre for Drugs and Drug Addiction, EMCDDA), Управління ООН з наркотиків і злочинності (UNODS Office on Drugs and Crime), наукові огляди та окремі дослідження, присвячені біохімії, токсикології, судово-медичній ідентифікації речовин, що містяться в продуктах, виготовлених на основі Mitragyna speciosa, за останні 10 років (Elsevier, PubMed, ToxNet).
Результати та обговорення. Останнім часом кратом культивується на різних континентах та потрапляє на ринок під назвою «Кратом», в англомовних джерелах – «Kratom». Листя кратому висушуються та продаються у формі зеленого порошку, таблеток, капсул, екстрактів та жувальних цукерок. В Україні кратом реалізується під сотнями комерційних назв у мережі «Інтернет» як «Кратом», «продукт Кратом» «органічний чай Кратом», «етнічній чай Кратом», «чай Кратом» та ін. У складі листя кратому виявлено понад 40 структурно споріднених алкалоїдів, а також кілька флавоноїдів, терпеноїдних сапонінів, поліфенолів та різних глікозидів. Фармакологічні та токсичні ефекти кратому для більшості його складових вивчені недостатньо. Подібно до інших дієтичних добавок продукти з кратому повинні бути стандартизованими за вмістом алкалоїдів, мікробним забрудненням, пестицидами, важкими металами, залишковими розчинниками, бензо(а)піреном, афлатоксинами та ін., з відповідними вимогами до маркування.
Висновки. На ринок України має потрапляти якісна продукція – стандартизований екстракт листя кратому або інша, виготовлена на його основі безпечна продукція. Разом з тим останні дослідження доводять, що мітрагінін, що міститься в складі кратому, представляє значний інтерес для медичної науки, як модель для розробки нових підходів, що стосуються досить актуальних сфер медицини, зокрема для лікування болю та позбавлення від опіоїдної залежності.
Ключові слова: Mitragyna speciosa, альтернативні опіоїди, токсичність.
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ (ДЖЕРЕЛ) / REFERENCES
1. United Nations Office on Drugs and Crime (UNODC). UNODC Early Warning Advisory (EWA) on New Psychoactive Substances (NPS). Available online: https://www.unodc.org/LSS/Home/NPS (accessed on 14 June 2021).
2. European Monitoring Centre for Drugs and Drug Adiction. New Psychoactive Substances in Europe. Available online: http://www.emcdda.europa.eu/system/files/publications/65/TD0415135ENN.pdf (accessed accessed on 14 June 2021).
3. Kratom (Mitragyna speciosa) Drug Profile. Available online: http://www.emcdda.europa.eu/publications/ drug-profiles/kratom (accessed accessed on 14 June 2021).
4. Adkins J, Boyer E, McCurdy C. Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Current Topics in Medicinal Chemistry. 2011. Volume 11: p. 1165–1175.
5. Gong F, Gu H, Xu Q, Kang W. Genus Mitragyna: Ethnomedicinal uses and pharmacological studies. Phytopharmacology. 2012;3:263–272.
6. Davis G. Drug abuse: Newly-Emerging drugs and trends. Clin. Lab. Med. 2012;32:407–417.
7. Maruyama T, Kawamura M, Kikura-Hanajiri R, Takayama H, Goda Y. The botanical origin of kratom (Mitragyna speciosa; Rubiaceae) available as abused drugs in the Japanese markets. J. Nat. Med. 2009;63:340–344.
8. Tanguay P. Kratom in Thailand. Transl. Inst. Legis. Reform Drug Policies 2011, 13: 1–16.
9. Saingam D, Assanangkornchai S, Geater A, Balthip Q. Pattern and consequences of krathom (Mitragyna speciosa Korth.) use among male villagers in southern Thailand: A qualitative study. Int. J. Drug Policy. 2018;24:351–358.
10. Singh D, Narayanan S, Vicknasingam B. Traditional and non-traditional uses of Mitragynine (Kratom): A survey of the literature. Brain Res. Bull. 2016; 126: 41–46.
11. Vicknasingam B, Narayanan S, Beng G, Mansor S. The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int. J. Drug Policy. 2010;21:283–288.
12. Swogger M, Hart E, Erowid F, Erowid E, Trabold N, Yee K, Parkhurst K, Priddy B, Walsh Z. Experiences of Kratom Users: A Qualitative Analysis. J. Psychoact. Drugs 2015;47:360–367.
13. Kamble S, Sharma A, King T, Leon F, McCurdy C, Avery B. Metabolite profiling and identification of enzymes responsible for the metabolism of mitragynine, the major alkaloid of Mitragyna speciosa (kratom). Xenobiotica. 2019;49(11):1279–88.
14. Singh D, Mьller C, Murugaiyah V, Hamid S, Vicknasingam B, Avery B, et al. Evaluating the hematological and clinicalchemistry parameters of kratom (Mitragyna speciosa) users in Malaysia. J Ethnopharmacol. 2018;214:197–206.
15. Philipp A, Wissenbach D, Zoerntlein S, Klein O, Kanogsunthornrat J, Maurer H. Studies on the metabolism of mitragynine, the main alkaloid of the herbal drug Kratom, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. J Mass Spectrom. 2009;44(8):1249–61.
16. Manda V, Avula B, Ali Z, Khan I, Walker L, Khan S. Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline. Planta Med. 2014;80(7):568– 76.
17. Stolt A-C, Schroder H, Neurath H, Grecksch G, Hollt V, Meyer MR, et al. Behavioral and neurochemical characterization of kratom (Mitragyna speciosa) extract. Psychopharmacology. 2014;231(1):13–25.
18. Feng L.-Y, Battulga A, Han E, Chung H, Li J.-H. New psychoactive substances of natural origin: A brief review. J. Food Drug Anal. 2017; 25: 461–471.
19. Raffa R. Kratom and Other Mitragynines: The Chemistry and Pharmacology of Opioids from a Non-Opium Source, 1st ed.; Raffa, R.B., Ed.; CRC Press: Boca Raton, FL, USA, 2014.
20. ProzialeckW, Jivan J, Andurkar S. Pharmacology of Kratom: An Emerging Botanical Agent with Stimulant, Analgesic and Opioid-Like Effects. J. Am. Osteopath. Assoc. 2012;112:792–799.
21. Veeramohan R, Azizan K, Aizat W, Goh H, Mansor S, Yusof N, Baharum S, Ng C. Metabolomics data of Mitragyna speciosa leaf using LC-ESI-TOF-MS. Data Br. 2018; 18: 1212–1216.
22. Kamble S, Sharma A, King T, Leуn F, McCurdy C, Avery B. Metabolite profiling and identification of enzymes responsible for the metabolism of mitragynine, the major alkaloid of Mitragyna speciosa (kratom). Xenobiotica 2018; 14:1–31.
23. Yamamoto L, Horie S, Takayama H, Aimi N, Sakai S, Yano S, Shan J, Pang P, Ponglux D, Watanabe K. Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa. Gen. Pharmacol. 1999;33:73–81.
24. Babu K, McCurdy C, Boyer E. Opioid receptors and legal highs: salvia divinorum and Kratom. Clin. Toxicol. (Philadelphia, Pa.) 2008;46:146–152. doi: http://dx.doi.org/10.1080/15563650701241795.
25. Raffa R, Pergolizzi J, Taylor R, Ossipov M. Nature’s first “atypical opioids”: kratom and mitragynines. J Clin Pharm Ther. 2018;43(3):437–41.
26. Kruegel A, Gassaway M, Kapoor A, Varadi A, Majumdar S, Filizola M, et al. Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc. 2016;138(21):6754–64.
27. Varadi A, Marrone G, Palmer T, Narayan A, Szabo M, Le Rouzic V, et al. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with mu agonism and delta antagonism, which do not recruit beta-arrestin-2. J Med Chem. 2016;59(18):8381–97.
28. Raehal K, Bohn L. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology. 2011;60(1):58–65.
29. Trakulsrichai S, Sathirakul K, Auparakkitanon S, Krongvorakul J, Sueajai J, Noumjad N, et al. Pharmacokinetics of mitragynine in man. Drug Des Devel Ther. 2015;9:2421–9.
30. Raehal K, Bohn L. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology. 2011;60(1):58–65.
31. Vбradi A, Marrone G, Palmer T, Narayan A, Szabу MR, Le Rouzic V, et al. Mitragynine/corynantheidine seudoindoxyls as opioid analgesics with mu agonism and delta antagonism, which do not recruit beta-arrestin-2. J Med Chem (2016) 59(18):8381–97. doi:10.1021/acs.jmedchem.6b00748
32. Matsumoto K, Mizowaki M, Suchitra T, Murakami Y, Takayama H, Sakai S, et al. Central antinociceptive effects of mitragynine in mice: contribution of descending noradrenergic and serotonergic systems. Eur J Pharmacol. 1996;317(1):75–81.
33. Stolt A, Schrцder H, Neurath H, Grecksch G, Hцllt V, Meyer, M.R, Maurer H, Ziebolz N, Havemann-Reinecke U, Becker A. Behavioral and neurochemical characterization of kratom (Mitragyna speciosa) extract. Psychopharmacology 2014; 231: 13–25.
34. Vermaire D, Skaer D, Tippets W. Kratom and General Anesthesia: A Case Report and Review of the Literature. A A Pract. 2019;12:103–105.
35. Ismail I, Wahab S, Sidi H, Das S, Lin LJ, Razali R. Kratom and future treatment for the opioid addiction and chronic pain: periculo beneficium? Curr Drug Targets. 2019;20(2):166–72.
36. Utar Z, Majid MIA, Adenan MI, Jamil MFA, Lan TM. Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E(2) production induced by lipopolysaccharide in RAW264.7 macrophage cells. J Ethnopharmacol. 2011;136(1):75–82.
37. Kamble SH, Sharma A, King TI, Leon F, McCurdy CR, Avery BA. Metabolite profiling and identification of enzymes responsible for the metabolism of mitragynine, the major alkaloid of Mitragyna speciosa (kratom). Xenobiotica. 2019;49(11):1279–88.
38. Azizi J, Ismail S, Mansor SM. Mitragyna speciosa Korth leaves extracts induced the CYP450 catalyzed aminopyrine-Ndemethylase (APND) and UDP-glucuronosyl transferase (UGT) activities in male Sprague-Dawley rat livers. Drug Metabol Drug Interact. 2013;28(2):95–105.
39. Shaik Mossadeq WM, Sulaiman MR, Tengku Mohamad TA, Chiong HS, Zakaria ZA, Jabit ML, et al. Anti-inflammatory and antinociceptive effects of Mitragyna speciosa Korth methanolic extract. Med Princ Pract. 2009;18(5):378–84.
40. Lim E, Seah T, Koe X, Wahab H, Adenan M, Jamil MFA, et al. In vitro evaluation of cytochrome P450 induction and the inhibition potential of mitragynine, a stimulant alkaloid. Toxicol In Vitro. 2013;27(2):812–24.
41. Kong W, Chik Z, Ramachandra M, Subramaniam U, Raja Aziddin R, Mohamed Z. Evaluation of the effects of Mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay. Molecules. 2011;16: 7344–7356.
42. Uno Y, Uehara S, Murayama N, Yamazaki H. Cytochrome P450 1A1, 2C9, 2C19, and 3A4 Polymorphisms Account for Interindividual Variability of Toxicological Drug Metabolism in Cynomolgus Macaques. Chem. Res. Toxicol. 2018; 31:1373–1381.
43. Koe X, Jamil MFA, Adenan M, Tan M, Lim E, Seah T, Majid MIA, Wahab H. In vitro evaluation of cytochrome P450 induction and the inhibition potential of mitragynine, a stimulant alkaloid. Toxicol. In Vitr. 2012; 27:812–824.
44. Showande S, Fakeye T, Kajula M, Hokkanen J, Tolonen A. Potential inhibition of major human cytochrome P450 isoenzymes by selected tropical medicinal herbs—Implication for herb–drug interactions. Food Sci. Nutr. 2019; 7: 44–55.
45. Ulbricht C, Costa D, Dao J, Isaac R, Leblanc Y, Rhoades J, Windsor R. An evidence-based systematic review of kratom (Mitragyna speciosa) by the natural standard research collaboration. J. Diet. Suppl. 2013;10: 152–170.
46. Kong WM, Chik Z, Ramachandra M, Subramaniam U, Aziddin RER, Mohamed Z. Evaluation of the effects of Mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay. Molecules. 2011;16(9):7344–56.
47. Ismail NIW, Jayabalan N, Mansor SM, Muller CP, Muzaimi M. Chronic mitragynine (kratom) enhances punishment resistance in natural reward seeking and impairs place learning in mice. Addict Biol. 2017;22(4):967–76.
48. Yusoff NHM, Suhaimi FW, Vadivelu RK, Hassan Z, Rumler A, Rotter A, et al. Abuse potential and adverse cognitive effects of mitragynine (kratom). Addict Biol. 2016;21(1):98–110.
49. Hassan Z, Suhaimi FW, Ramanathan S, Ling K-H, Effendy MA, Muller CP, et al. Mitragynine (Kratom) impairs spatial learning and hippocampal synaptic transmission in rats. J Psychopharmacol. 2019;33(7):908–18.
50. Sabetghadam A, Navaratnam V, Mansor SM. Dose-response relationship, acute toxicity, and therapeutic index between the alkaloid extract of Mitragyna speciosa and its main active compound mitragynine in mice. Drug Dev Res. 2013;74(1):23–30.
51. Fakurazi S, Rahman SA, Hidayat MT, Ithnin H, Moklas MAM, Arulselvan P. The combination of mitragynine and morphine prevents the development of morphine tolerance in mice. Molecules. 2013;18(1):666–81.
52. Meireles V, Rosado T, Barroso M, Soares S, Gonзalves J, Luнs В, et al. Mitragyna speciosa: clinical, toxicological aspects and analysis in biological and non-biological samples. Medicines. 2019;6(1):35.
53. Hughes RL. Fatal combination of mitragynine and quetiapine–a case report with discussion of a potential herb-drug interaction. Forensic Sci Med Pathol. 2019;15(1):110–3.
54. Azizi J, Ismail S, Mordi MN, Ramanathan S, Said MIM, Mansor SM. In vitro and in vivo effects of three different Mitragyna speciosa korth leaf extracts on phase II drug metabolizing enzymes–glutathione transferases (GSTs). Molecules. 2010;15(1):432–41.
55. Azizi J, Ismail S, Mansor SM. Mitragyna speciosa Korth leaves extracts induced the CYP450 catalyzed aminopyrine-Ndemethylase (APND) and UDP-glucuronosyl transferase (UGT) activities in male Sprague-Dawley rat livers. Drug Metabol Drug Interact. 2013;28(2):95–105.
56. Lu J, Wei H, Wu J, Fadzly M, Jamil A. Evaluation of the Cardiotoxicity of Mitragynine and Its Analogues Using Human Induced Pluripotent Stem Cell- Derived Cardiomyocytes. PLoS ONE 2014, 9, e115648.
57. Chittrakarn S, Sawangjaroen K, Prasettho S, Janchawee B, Keawpradub N. Inhibitory effects of kratom leaf extract (Mitragyna speciosa Korth.) on the rat gastrointestinal tract. J. Ethnopharmacol. 2008; 116: 173–178.
58. Matsumoto K, Hatori Y, Murayama T, Tashima K, Wongseripipatana S, Misawa K, et al. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa. Eur J Pharmacol (2006) 549:63–70. doi:10.1016/j.ejphar.2006.08.013
59. Kumarnsit E, Keawpradub N, Nuankaew W. Effect of Mitragyna speciosa aqueous extract on ethanol withdrawal symptoms in mice. Fitoterapia 2007:78(1): 182–185.
60. Farah Idayu N, Taufik Hidayat M, Moklas MAM, Sharida F, Nurul Raudzah AR, Shamima AR, Apryani E. Antidepressant-like effect of mitragynine isolated from Mitragyna speciosa Korth in mice model of depression. Phytomedicine 2011;18(1):402–407.
61. Ilmie MU, Jaafar H, Mansor SM, Abdullah JM. Subchronic toxicity study of standardized methanolic extract of Mitragyna speciosa Korth in Sprague-Dawley Rats. Front. Neurosci. 2015;9:1–6.
62. Harizal SN, Mansor SM, Hasnan J, Tharakan JKJ, Abdullah J. Acute toxicity study of the standardized methanolic extract of Mitragyna speciosa Korth in Rodent. J. Ethnopharmacol. 2010;131:404–409.
63. Parthasarathy S, Ramanathan S, Ismail S. et al. Determination of mitragynine in plasma with solid-phase extraction and rapid HPLC–UV analysis, and its application to a pharmacokinetic study in rat. Analytical and Bioanalytical Chemistry. 2010;397:2023–2030.
64. Zhanglei L. Determination of kratom using high performance liquid chromatography tandem mass spectrometry. Am J Chem Appl. 2015;2(4):61–5. 45. Fuenffinger N, Ritchie M, Ruth A, Gryniewicz-Ruzicka C. Evaluation of ion mobility spectrometry for the detection of mitragynine in kratom products. J Pharm Biomed Anal. 2017;134:282–6. doi:10.1016/j.jpba.2016. 11.055
65. Philipp AA, Wissenbach DK, Zoerntlein SW,et al. Studies on the metabolism of mitragynine, the main alkaloid of the herbal drug Kratom, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. Journal of Mass Spectrometry. 2009;44:1249–1261.
66. Philipp AA, Meyer MR, Wissenbach DK et al. Monitoring of kratom or Krypton intake in urine using GC-MS in clinical and forensic toxicology. Analytical and Bioanalytical Chemistry. 2011;400:127–135.
67. Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH. Metabolism studies of the Kratom alkaloids mitraciliatine and isopaynantheine, diastereomers of the main alkaloids mitragynine and paynantheine, in rat and human urine using liquid chromatography–linear ion trap-mass spectrometry. Journal of Chromatography. 2011;879:1049–1055.
68. Phillipson JD, Hemingway SR. Chromatographic and spectroscopic methods for the identification of alkaloids from herbarium samples of the genus Uncaria. Journal of Chromatography. 1975;105:163–178.
69. Basiliere S, Bryand K, Kerrigan S. Identification of five Mitragyna alkaloids in urine using liquid chromatographyquadrupole/time of flight mass spectrometry. J. Chromatogr. 2018;1080:11–19.
70. Lelono AA, Latifah IL, Herdiawan H, Cahyani RW. Extraction and identification of Mitragynine from the Kratom Leaf (Mitragyna speciosa) using HFC-134a subcritical system. The 6th International Symposium on Applied Chemistry (ISAC) 2020. IOP Conf. Series: Materials Science and Engineering 1011 (2021) 012045 IOP Publishing doi:10.1088/1757-899X/1011/1/012045
71. Guddat S, Gцrgens C, Steinhart V, Schдnzer W, Thevis M. Mitragynine (Kratom) - Monitoring in sports drug testing. Drug Test. Anal. 2016;8:1114–1118.
72. Eggleston W, Stoppacher R, Suen K, Marraffa JM, Nelson LS. Kratom use and toxicities in the United States. Pharmacotherapy. 2019;39(7):775–7.
73. Hanna J. Bogus Kratom market exposed. Entheogen Rev. 2012;12(1):26–8.
74. Kuehn B. Kratom-related deaths. JAMA. 2019;321(20):1966.
75. Dixon RB, Waggoner D, Davis M, Rembold K, Dasgupta A. Contamination of some kratom products with salmonella. Ann Clin Lab Sci. 2019;49(5):675–7.
76. Multistate Outbreak of Salmonella Infections Linked to Kratom (Final Update). Centers for Disease Control and Prevention. 2018. URL: https://www.cdc.gov/salmonella/kratom-02-18/index.html
77. Swogger MT, Walsh Z. Kratom use and mental health: a systematic review. Drug Alcohol Depend. 2018;183:134–40.
78. Ismail I, Wahab S, Sidi H, Das S, Lin LJ, Razali R. Kratom and future treatment for the opioid addiction and chronic pain: periculo beneficium? Curr Drug Targets. 2019;20(2):166–72.
Стаття надійшла до редакції 10.06.2021 / Received June 10, 2021